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Floating orbitals and the rotational projector operators defined by Percus and Rotenberg, are 
used to obtain approximate wavefunctions for the ground states of He-like ions and for the first 
excited 1p state of helium. 

Mit Hilfe von "Floating Orbitals" und Rotationsprojektionsoperatoren, wie sie yon Percus und 
Rotenberg definiert worden sind, werden ngherungsweise Wellenfunktionen f'tir die Grundzust~inde 
yon He4ihnlichen Ionen und fiir den ersten angeregten He-Zustand 1p erhalten. 

The present paper reports the results obtained with a simple procedure based 
on the idea of different orbitals for different spins [lJ together with the "floating 
gaussian" technique [2], which is able to take into account part of the correlation 
energy. Some preliminary results obtained with this procedure were already 
reported for He [3]. Here the procedure is described in a more detailed way and 
results for He-like systems in their ground states and an application to an excited 
state of He, (ls 2p) 1p are given. 

In the ground state of He-like atoms an easy way of introducing electron 
correlation, especially the angular correlation, is to displace the two space 
functions on opposite sides of the nucleus [3]. However this procedure involves 
two main difficulties: 1) a substantial loss in potential energy occurs as a result 
of taking away charge from the nucleus, and 2) the resulting wavefunction has 
no longer the required symmetry. As far as the first difficulty is concerned, a 
possible solution is to assume that the one-electron functions can be written 
as linear combination of the form 

or more generally 

= Z (1) 
k 

qh = ~ 2i(6) q~(r - 6) d6 (1 a) 
o 
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where ~k(r--&~) are orbitals centred at points, defined by the vectors g~, along 
an oriented line containing the nucleus and where 2~ and 16~1 are taken as vari- 
ational parameters. In the following we shall deal only with a discrete two-terms 
expansion, where one term is on the nucleus and the other at a distance 6~: 

q~i(r) = q~io(r) A- ); i(oil  ( r  - -  6i)  (2) 

As far as the lack the correct symmetry is concerned one can solve the difficulty 
by averaging the rotations of the impure state, with a suitable weight factor. This 
can be accomplished by the use of the formalism of rotational projectors introduced 
by Percus and Rotenberg [4] Oj~t, defined by the following equation: 

2 J +  1 
OsMTJ - SuE j'j'j" eiM(O+Z)c~ 

�9 F[M - J, 1 + M + J, 1; sin2(O/2)] Rc, ozS4,ox ~ sin0 dgp dO dx 
(3) 

where ~ is the impure state function and OsMtP is the corresponding projected 
wavefunction of definite angular momentum J and its z component M. In Eq. (3) 
the integration variables ~b, 0, Z are Eulerian angles and R, S are rotation operators 
in the ordinary and spin space respectively. The calculation of the expectation 
value of the hamiltonian with the projected wavefunction can be greatly simplified 
since: 1) the hamiltonian operator commutes with the projector OjM [5]. The 
expectation value of the energy thus becomes 

(OjMtPIHI OjM~P) <WIHI OsM~P> 
(H> = = (4 )  

<OjM~elOjMT"I <7'lojM'e) 

2) the spin factor for singlet states is left unchanged by the projection; 3) the order 
of the integrations in Eq. (4) may be interchanged and one can integrate first 
over the space coordinates and then over the Eulerian angles q~, 0 and Z; 4) when 
states with M = 0 are considered, a significant simplification in the expression 
of the projector OSM is obtained. In this case, as it has been pointed out in the 
previous paper [3], a suitable choice of the reference system for the Eulerian 
angles makes the integrations over the variables q~ and Z easily performed, resulting 
in a constant factor. 

G r o u n d  S t a t e  

In this section we describe the results obtained for some He-like systems in 
their ground state 1S. According to Eq. (2) the orbitals qh are taken to be linear 
combinations of two STO - ls, the first at the nucleus and the second at distance 
6i from it. Therefore we will write the total (unnormalized) wavefunction in the form: 

7'(r~,  r2) = OooA [ (e  -~1 rl + 2~ e - r  Ir1-~4) (e - ~2,.2 + 22 e -r  1,2- ~21)] 

�9 [a (1 )  fl(2) - fl(1) ~(2) ]  
(5) 
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where O00 and A stand for rotational projector and antisymmetrizer respectively. 
If the ~i's, 2i's and 6i's are considered as adjustable parameters, function (5) contains 
as particular cases: 1) the uncorrelated single determinant for 21 = 22 = 0 and 
~1 = ~2; 2) the conventional DODS approach of HyUeraas and Eckart [1] for 
21 = 22 = 0 and ~1 ~ ~e- In our case the optimisation of variational parameters is 
performed after the projection, and when function (5) is optimized it corresponds 
to a restricted form of the Extended Hartree-Fock for He-like ions. Therefore 
one cannot expect to obtain from (5) the exact value of the energy, which requires, 
in that scheme, the use of hypercomplex spin orbitals [6]. It is easy to see that 
many centre integrals are needed for the computation of the energy in the present 
scheme. Therefore it was found convenient to expand each STO appearing in 
Eq. (5) as a linear combination of gaussian-type orbitals (GTO). A three term 
expansion according to McWeeny and Huzinaga [7] was considered adequate 
to approximate each STO for the present purposes. The optimisation of non- 
linear variational parameters was carried out by a simple modification of the 
procedure used by Roos et al. [8]. 

Tab le  1. O p t i m u m  values  of  v a r i a t i o n a l  p a r a m e t e r s ,  c o m p u t e d  to ta l  ene rgy  a n d  c o r r e l a t i o n  ene rgy  

(a.u.) fo r  H , He ,  Li + 

H -  H e  Li + 

~'1 2.636 5.712 12.884 
~] 0 .372 2.086 3.290 
61 1.991 0 .167 0.127 

21 21.831 11.348 20.187 

~2 3.768 3.547 6,831 

~ 1.051 1.265 2.050 
62 - 0 .550 - 0.601 - 0.201 

22 16.159 9.712 15.513 

T o t a l  ene rgy  - 0 .51693 - 2 .88780 - 7 .26258 
Cor re l a t .  ene rgy  0 .02910  (73 %) 0.02613 (62 %) 0.02618 (60 %) 

E x a c t  e n e r g y  [11 ]  - 0 .52775 - 2 .90372 - 7 .27993 
R a d i a l  l imi t  [ 12 ]  - 0 .51449 - 2 .87903 - 7 .25249 
Best  s ingle  ff - 0 .4727 - 2 .84765 - 7 .22266 
C o n v e n t i o n a l  D O D S  [9 ]  - 0 .5133 - 2.8757 - 7 .2490 

In Table 1 the computed total energies and correlation energies are reported 
together with optimum values of variational parameters. The comparison of 
total energies with the uncorrelated best-~ single determinant and the DODS 
values of Shull and L6wdin [9], reported in the same Table 1, is satisfactory. 
The fraction of correlation energy here computed are beyond the limit of radial 
correlation. This means that, as expected, the procedure here proposed allows 
the introduction of a significant amount of angular correlation. In the case of 
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H -  the present results (-0.5169 a.u.) are better than the value (-0.5150 a.u.) 
computed by Banyard [10] by his configuration interaction-floating-orbital 
(CIFO) method. The wavefunction considered by this author is closely related 
to (5), buth with important differences�9 The CIFO function is a complete configura- 
tion interaction built from three ls-STO, one of them centred on the nucleus, 
the other two being symmetrically placed at the two opposite sides of the nucleus 
itself. Thus the main differences between Banyard's and the present function 
can be summarized as follows: 1) function (5) has the correct spherical symmetry; 
2) function (5) is equivalent to a restricted rather than to a complete CI; 3) the 
STO displaced from the nucleus are free to have different exponential factors and 
distances from the nucleus. 

As far as the wavefunctions are concerned, qualitative information can be 
obtained by examining the shape of the two optimized orbitals for each system. 
In Fig. 1 are reported the sections of orbitals ~01 and q~z for He in a plane containing 
the three centers of the STO's, together with the corresponding sections of the 
orbitals optimized by Shull and L6wdin in the conventional DODS scheme [9]. 
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Fig. 1. Sections of the optimum orbitals in a plane containing the centers of the STO's, in case of He. 
Full lines refer to the orbitals described in this paper and dashed lines to the orbitals of Shull and 

L6wdin 
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Fig. 2. Sections of the opt imum orbitals in a plane perpendicular to that of Fig. 1. Full lines: this paper; 
dashed lines: Shull and LiSwdin 

One of the orbitals is more contracted and localized near to the nucleus, while 
the other is diffuse and has its maximum at large distance from nucleus. This is 
certainly related to the requirement of introducing radial correlation. In Fig. 2 
are reported the sections of the same orbitals in the plane perpendicular to that 
of the previous figure and containing the nucleus. In this case the differences 
among the orbitals are less pronounced. 

It should be pointed out that, relaxing the restriction that q~o and ~bl in Eq. (2) 
are STO's, one can obtain better energies than those reported above, A simple 
example of such functions was obtained by arbitrarily putting in Eq. (2) 

3 5 
q~l = ~ cjexp(-~j~hr2)+21 ~, cjexp[-~jrfl(r-61) 2] 

j = l  j = 4  

2 5 
cp2 = ~ c jexp(-  ~jr/2r 2) + 22 ~ c j exp [ -  ejq'2(r- 62) 2] 

j = l  j = 3  

(6) 
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where the coefficients cj and ctj are chosen in such a way as to give, for q~ = ~/'~ = 2~ = 1 
and 6~ = 0, a five terms gaussian expansion of the two "different orbitals for 
different spins" of Shull and L6wdin [9]. The 2, ~/and 6 parameters were optimized 
for He and the corresponding minimum energy was found to be -2 .89170 a.u. 
corresponding to the 71% of the correlation energy, to be compared with 62% 
reported in Table 1. The function defined by orbitals (6) could certainly be improved 
or extended. Unfortunately this problem appears to be complicate and brute 
force optimisation of many non linear parameters  seems to be unavoidable. For  
these reasons it was decided not to pursue this approach further. 

Application to Excited States 

It follows from the previous discussion that the present method, in principle, 
can be applied to states of symmetry different from that of the ground state as 
well. To test the applicability of the method, we have computed the total energy 
of the 1p state of He atom. The trial function used is again of the type (5), with 
the projector replaced by the appropriate one for this state, Olo. The ls function 
centered on the nucleus has been approximated again by a three term gaussian 
expansion according to McWeeny [4] and Huzinaga [5], while the orbitals at the 
distance 6 i have been approximated by the following two-term expansion 

~Pi = 0.82018 exp [ - 0.131373 ( r -  6i)2 ~/2] + 0.274057 exp [ -  0.852787 ( r -  ~)2 ~/2] (7) 

where ~h is a scaling parameter.  This two-term expansion roughly simulates the 
radial part  of a 2p Slater orbital. With this simple wave-function a total energy 
of -2.10768 a.u. has been obtained 1 , which compares favourably with the 
experimental value of -2 .12384 a.u. It must be underlined that the value com- 
puted here was obtained from an impure state function kv built on only with 
ls Slater functions. Nevertheless the projected wavefunction O~o 7~ can be 
considered, on the basis of the energy value obtained, a reasonably accurate 
wavefunction for ~P state of He. The energy value could certainly be improved, 
using in the wavefunction orbitals of p type together with orbitals of s type. 
Here we wanted only to show that the method can be satisfactorily applied 
to states of symmetry different from that of the ground state and we believe 
that the computat ion just described fulfills this purpose. 
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